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PREFACE
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EXECUTIVE SUMMARY

Background and Objectives
•  Since 1964, the California Department of Motor Vehicles has issued a number of

monographs on driver characteristics and accident risk factors as part of a series
of analyses known as the California Driver Record Study.

•  Past California Driver Record Study analyses, and many other studies conducted
by the California Department of Motor Vehicles, have utilized standard
parametric techniques such as analysis of variance, analysis of covariance, and
ordinary least squares multiple regression models in analyzing the relationship
between a variety of independent variables and subsequent accident rates.  The
justification for using these techniques is based on the operation of the central
limit theorem in producing approximate normality of the test statistic when
sample size is extremely large.

•  This paper presents the results of a number of regression analyses of driving
record variables measured over a 6-year time period (1986-91).  The techniques
presented consist of ordinary least squares, weighted least squares, Poisson,
negative binomial, linear probability, and logistic regression models. The objective
of the analyses was to compare the results obtained from several different
regression techniques under consideration for use in the 1996 California Driver
Record Study, which is currently in progress.

•  The results are informative in determining whether the various regression
methods produce similar results for different sample sizes and to explore whether
reliance on ordinary least squares techniques in past California Driver Record
Study analyses have produced biased significance levels and parameter
estimates.  
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Research Methods
•  Data for the analyses were obtained from the driving records of a 1% random

sample of licensed California drivers extracted in 1992 from the California Driver
Record Study database.

•  For each subject, information was collected on driver (a) age; (b) gender;
(c) presence of a physical or mental condition code on record; (d) presence of
license restrictions on record; (e) number of total citations occurring during 1986-
88; and (f) number of total accidents occurring during 1986-88.

•  Ordinary least squares, weighted least squares, Poisson, negative binomial, linear
probability, and logistic regression were used to identify which combination of
variables in the pool provided the most accurate equation for predicting the
accident criterion measure.

•  Analyses are presented for two types of models:  (1) those using frequency data,
where the dependent (criterion) variable represents the actual number of accident
involvements, from 0 to K accidents, and (2) those using categorical data, where
the accident criterion measure is a binary variable (equal to 0 if no accidents and 1
if one or more accidents).

Results
•  The results of the analyses are consistent with those of prior traffic safety

research, with all of the models indicating that increased accident involvement
was associated with the following:
– Increased prior citation frequency
– Increased prior accident frequency
– Possessing a commercial driver license
– Being young
– Being male
– Having a medical condition on record
– Having a driver license restriction on record

•  The use of different regression techniques do not lead to any greater increase in
individual accident prediction beyond that obtained through application of ordinary
least squares regression.

•  Any generalization about driving performance from the present analyses is limited
by the absence of exposure data (e.g., miles driven) and territorial data (e.g., driver
record information by ZIP Code and U.S. census variables).

Recommendations
•  The results indicate that, for these data, the use of the different regression

techniques do not lead to any greater increase in individual accident prediction
beyond that obtained through application of ordinary least squares regression.  In
addition, the methods produce almost identical results in terms of the relative
importance and statistical significance of the independent variables.

•  It therefore appears safe to employ ordinary least squares multiple regression
techniques on driver accident-count distributions of the type represented by
California driver records, at least when the sample sizes are large.
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INTRODUCTION

This paper presents the results of a number of regression analyses of driving record
variables measured over a 6-year time period (1986-91).  The objective of the
analyses was to compare the results obtained from several different regression
techniques under consideration for use in the 1996 California Driver Record Study,
which is currently in progress.  Because this latter effort will both include and extend
the present dataset and analyses, no detailed interpretation of the results will be
presented here.  Rather, the following presents only the multiple regression equations
and highlights the major findings.

Past California driver record studies, and many other studies of the California DMV,
have utilized standard parametric techniques such as analysis of variance, analysis
of covariance and ordinary least squares (OLS) multiple regression models in
analyzing the relationship between a variety of independent variables and
subsequent accident rates.  The justification for using OLS-based parametric
methods on non normally-distributed accident count variables is provided in several
previous California DMV publications, such as Peck and Kuan (1983), DeYoung
(1995) and Gebers, DeYoung, and Peck (1997).  In general, these justifications are
based on asymptotic arguments–i.e., the operation of the central limit theorem in
producing approximate normality of the test statistic when N is extremely large.  The
results of a number of Monte Carlo studies have also been cited as an additional
defense, including the effects of violating the homoscedasticity assumption when
heteroscedasticity is not extreme.

Recent years have witnessed the development and increased availability of
techniques which are less reliant on asymptotic arguments and more anchored in
formal mathematical derivation.  Among these techniques are Poisson and negative
binomial regression, weighted least squares regression, logistic regression, and probit
regression.  It is therefore becoming more common to see unqualified indictments
against the use of OLS-based techniques on highly non-normal data such as accident
frequencies.  A number of authors (Maddala, 1991; Kleinbaum et al., 1988) point out
that highly skewed Poisson-like variables produce heteroscedastistic residuals,
thereby introducing “inconsistency” into the parameter estimates produced by OLS
techniques.  Draper and Smith (1966) note that use of OLS-multiple regression in the
presence of heteroscedasticity and non-normality results in regression models which,
though not biased, do not satisfy the property of minimum variance.  Other authors
point out that OLS models can produce parameter estimates (Y’s) that reside outside
the permissible range of observed values (e.g., negative values or values above 1.0 for
binary dependent variables).  

These concerns have also been raised in connection with studies of both driver and
roadway accident rates.  In a recent article on the pitfalls of using R2 as a measure to
evaluate goodness-of-fit of accident prediction models, Miaou, Lu, and Lum (1996) list
a number of disadvantages of OLS-based methods, as noted below:

Because accident prediction models are nonnormal and functional forms are
typically nonlinear, this study showed through simulated examples that R2 is
not an appropriate measure to make the decisions and comparisons described.
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Furthermore, three properties were identified as desirable for any alternative
measure to appropriately evaluate the models:  (a) it should be bounded
between 0 and 1–a value of 0 if no covariate (other than the intercept) is
included in the model and a value of 1 if all the necessary covariates are
included, (b) it should increase proportionally as equally important, independent
covariates are selected and added to the model one at a time regardless of their
order of selection, and (c) it should be invariant with respect to the mean (i.e.,
the value of the measure should not change by simply increasing or decreasing
the value of the intercept term in the model).  (p. 13)

The above attitude is also reflected in a monograph by Davis (1990), which was
commissioned by the National Highway Transportation Safety Administration
(NHTSA) in connection with the final report by Stock et al. (1983) on the Dekalb
driver training project.  Davis (1990) was highly critical of the authors’ use of analysis
of variance and multiple regression on grounds similar to Miaou et al., as evidenced by
the following:

The use of ANOVA techniques when the underlying assumptions are
moderately violated may give results which are quite similar to those obtained
from more appropriate methods of statistical analysis.  However, based on the
extremely skewed, non-normal distributions of the dependent variables in this
study, the use of ANOVA methods is inappropriate.  (p. 11)

With respect to the statistical methods used by DeWolf and Smith (1988), the
multiple regression approach is subject to the same criticisms as were
mentioned for the Stock et al. (1983) and Smith and Blatt (1987) reports, in
that the distributions of the dependent variables (number of accidents, number
of violations) do not satisfy the general linear model assumptions.  (p. 22)

It is instructive to note that none of the above authors acknowledge the possible role
of very large N in mitigating the effects of non-normality in the parent distribution.

It is therefore informative to examine whether various methods produce similar
results at different sample sizes and to explore whether reliance on OLS techniques in
past California driver record studies have produced significance levels and parameter
estimates that are materially biased.

METHODOLOGY

Subjects
Data for the analyses were obtained from the driving records for a 1% random sample
of licensed California drivers (n = 152,931) extracted in 1992 from the California
Driver Record Study database.  Detailed information on this database is provided by
Peck, McBride, and Coppin (1971), Peck and Kuan (1983), and Peck and Gebers
(1992).

To be eligible for selection into the sample, drivers had to meet the following criteria:
(a) have a valid driver license at the beginning of the study period; (b) be alive as of
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the May 1992 extraction date; and (c) possess a driver license that had not been
expired for over 6 months as of the extraction date.

For each subject, information was collected on (a) age; (b) gender; (c) presence of a
physical or mental (P&M) condition code on record; (d) presence of license restrictions
on record; (e) number of total citations occurring during 1986-88; and (f) number of
total accidents occurring during 1986-88.  The following displays descriptive statistics
for the biographical and driver-record variables:

Variable n = 152,931
Total accidents (1989-91)

  X 0.1517

SD 0.4138
Variance 0.1713

Total accidents (1986-88)

  X 0.1706

SD 0.4380
Variance 0.1918

Total citations (1986-88)

X 0.6414

SD 1.1964
Variance 1.4313

Age

X 42.67

SD 15.33
Variance 234.96

% Class 1/A or 2/B license 3.3
% one or more P&M conditions 1.4
% one or more restrictions 34.0
% male 52.4

Analysis
Multiple regression analysis was used to identify which combination of variables in
the pool provided the most accurate equation for predicting the criterion measure,
total accident frequency during 1989-91.  To be included in the analyses, drivers had
to be licensed for the entire 1986-91 period.

In the following sections, results are presented for two types of regression models:
(1) those using frequency data, where the dependent (criterion) variable represents
the actual number of accident involvements, from 0 to K accidents, and (2) those
using categorical data, where the accident criterion measure is a binary variable
(equal to 0 if no accidents and 1 if one or more accidents).
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RESULTS

Frequency Data:  Ordinary Least Squares, Weighted Least Squares, Poisson, and
Negative Binomial Regression Models
Table 1 summarizes the results from the nonconcurrent 6-year (1986-88; 1989-91)
ordinary least squares and weighted least squares multiple regression analyses.  All
seven candidate variables were statistically significant predictors of accident
involvement at the .10 level of probability, and, therefore, all were included in both
regression equations.  The directions (positive or negative) of the regression
coefficients indicate that increased accident involvement is associated with:

• Increased prior citation frequency
• Increased prior accident frequency
• Having a commercial driver license (which is mostly held by high-mileage

professional drivers)
• Being young
• Being male
• Having one or more P&M conditions on record
• Having one or more driver license restrictions on record

Table 1

Summary of Nonconcurrent 6-Year (1986-88; 1989-91) Multiple Regression
Equation for Predicting Total Accidents Using Ordinary Least Squares

and Weighted Least Squares Regression Models (n = 152,931)

Ordinary least squares Weighted least squares

Predictor variable Regression
coefficient

Standard
error F p Regression

coefficient
Standard

error F p

Constant 0.211 0.005 1741.49 .000 0.207 0.005 1875.48 .000
Prior total citations 0.029 0.009 965.10 .000 0.030 0.001 857.88 .000
Prior total accidents 0.060 0.002 595.97 .000 0.059 0.003 489.40 .000
License class 0.108 0.006 331.47 .000 0.108 0.007 265.73 .000
Age -0.001 0.000 247.50 .000 -0.001 0.000 271.93 .000
Gender -0.028 0.002 170.83 .000 -0.029 0.002 188.94 .000
P&M indicator 0.060 0.009 44.83 .000 0.061 0.010 40.38 .000
Restriction status 0.008 0.002 11.06 .000 0.007 0.002 9.45 .002

F for the equation = 546.81
p = .000

R
2
 = .024

F for the equation = 503.33
p = .000

R
2
 = .023

Note    .  Only independent variables that contributed significantly (p < .10) to the prediction of the criterion measure were
included in the models.  The criterion measure, total accidents during 1989-91, had a mean of 0.152 and standard deviation of
0.414.

The ordinary least squares regression equation takes the following form:

Y’ = A + B1 X1 + B2 X2 + … BK XK
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where Y’ is the predicted value (either a positive or negative continuous value) on the
dependent variable, A is the Y-intercept (the value of Y when all the X values are
zero), the Xs represent the various independent variables (of which there are K), and
the Bs are the regression coefficients assigned to each of the independent variables.
Linear regression models are usually additive models (from which one can estimate
increments in absolute risk) rather than multiplicative models (from which one can
estimate relative risks).  Parameters can be included for estimating nonlinear and
interactive (nonadditive) relationships, but the model is still linear and additive in the
context of the fitted parameter vector.

The reader should note that the use of multiple regression involves meeting the
following assumptions:  (1) Independence–the Y observations are statistically
independent of one another, (2) Linearity–the value of Y’ is a linear function of
X1, X2, … XK, (3) Homoscedasticity–the variance of Y’ is the same for any fixed
combination of X1, X2, … XK, (4) Normality–the errors of prediction are normally
distributed at all levels of Y’, (5) Measurement infallibility–the variates are free of
measurement error, and (6) Additivity–the effect terms (coefficients) of the
parameters can be combined in an additive fashion to estimate Y.  Failure to meet
the above assumptions are potential threats to the accuracy of the parameter
estimates.

As stated above, a fundamental assumption underlying unweighted least squares
linear regression analysis is that all random errors have the same variance at
different levels of the explanatory variable.  The homogeneity of residual error
assumption is invariably violated with accident data because of the direct
proportional relationship between the means and variances of the arrays, thereby
introducing heteroscedasticity into the distribution of the residuals.

The weighted-least squares method of analysis is a modification of standard
regression analysis procedures and is used when a regression model is to be fit to data
for which the assumptions of variance homogeneity and/or independence, stated
above, do not hold.  The least squares residual sum of squares is:

Σ(Yi - B0 - B1Xi - … BmXm)2.

The weighted least squares residual sum of squares is:

Σwi(Yi - B0 - B1Xi - … BmXm)2.

where wi is the nonnegative weight assigned to an individual observation.
Observations with small weights contribute less to the sum of squares and thus
provide less influence to the estimation of parameters, and vice versa for
observations with larger weights.  Therefore, it is logical to assign small weights to
observations whose large error of prediction make them more unreliable, and likewise
to assign larger weights to observations with smaller error of prediction.  It can, in
fact, be shown that best linear unbiased estimates are obtained if the weights are
inversely proportional to the individual errors (Kleinbaum, Kupper, & Muller, 1988).
For the current analysis, it is assumed that the mean and standard deviation of the
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accident criterion are proportional to one another.  Although this assumption is not
perfectly met, the amount of variance overdispersion is small.

In the present analysis, an ordinary least squares regression was run, and predicted
scores and residuals were computed for all observations.  The sample was subdivided
into quartiles on the basis of the distribution of the predicted scores.  The standard
deviation of the residuals was calculated for each quartile.  The individual weights
used in the follow-up weighted least squares regression were defined as the reciprocals
of the standard deviations.

A comparison of the results from the unweighted and weighted regression analyses in
Table 1 shows the effect of weighting.  The regression coefficients obtained by the two
methods are remarkably similar, and all significance levels (p values) except one are
identical through three digits.  That one exception (restriction status) differed slightly
on the third digit (p = .000 versus .002).

As displayed in Table 1, R2 actually declined slightly, from .024 using ordinary least
squares to .023 using weighted least squares.  Since OLS has the property of
maximizing the R2, the quantity computed from the weighted least squares may be
smaller than the OLS R2.  This can lead to an interpretive quandary when the
discrepancy is larger than exists here–namely preferring models with the highest R2,
but acknowledging that, on theoretical grounds, a model with lower R2 is preferred.

As noted earlier, attempts to model accident frequencies using least squares
regression techniques have been criticized in prior research (e.g., Boyer, Dionne, &
Vanasse, 1990; Grogger, 1990; Davis, 1990).  Linear models often assume a normal
distribution of data and allow for the prediction of negative values.  

The above concern has led to the development and advocacy of the Poisson regression
model.  The Poisson distribution lends itself to the modeling of either count or means
data by virtue of its discrete, nonnegative integer distribution.  In the case of traffic
accidents, the Poisson distribution gives

Pr (Y = K) = (e-λ)
λK

K!

where Pr (Y = K) is the probability that the number of accidents, Y, will equal K,
e = 2.718 (base of the natural logarithm), and λ is the expected number of accidents.
Given a vector of variables, λ for an individual driver can be estimated by the
equation,

ln λi
’ = XiB

where X is a vector of variables (e.g., age, gender, prior citations) and B is a vector of
estimable coefficients.

Poisson models are generally multiplicative.  Poisson regression models are not
restricted to all of the assumptions noted above for multiple linear regression and are
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specifically applicable to discrete count data where the probability of a given event
(e.g., accidents) is relatively infrequent and can be approximated by a Poisson
probability function.

The Poisson distribution, however, suffers from a potentially important limitation,
namely that the dependent variable’s mean and variance are constrained to be equal.
Data overdispersion (in which the variance is greater than the mean) or
underdispersion (in which the variance is less than the mean) violates this constraint
and leads to biased estimates of the significance of the regression coefficients.  If
overdispersion is present, the negative binomial regression model is employed as an
alternative.

The negative binomial model is an extension of the Poisson regression model which
allows the variance of the process to differ from the mean.  The negative binomial
model is

ln λi = B Xi + ε,

where exp (ε) has a gamma distribution with mean 0 and variance γ.

Table 2 presents the results from the Poisson and negative binomial regression
analyses.  As stated above, overdispersion is a phenomenon that sometimes occurs
in data that are arguably inappropriately modeled with a Poisson distribution.  If the
estimate of dispersion (variance divided by the mean) is greater than 1, then the data

Table 2

Summary of Nonconcurrent 6-Year (1986-88; 1989-91)
Multiple Regression Equation for Predicting Total Accidents Using Poisson

and Negative Binomial Models (n = 152,931)

Poisson regression Negative binomial regression

Predictor variable Regression
coefficient

Standard
error

χ2 p Regression
coefficient

Standard
error

χ2 p

Constant -1.35 0.032 1842.69 .000 -1.36 0.024 3095.26 .000
Prior total citations 0.112 0.004 725.35 .000 0.114 0.003 1195.01 .000
Prior total accidents 0.274 0.012 545.11 .000 0.275 0.009 897.50 .000
License class 0.458 0.027 282.07 .000 0.458 0.021 462.94 .000
Age -0.009 0.001 365.23 .000 -0.009 0.000 612.68 .000
Gender -0.218 0.014 240.36 .000 -0.217 0.011 402.02 .000
P&M indicator 0.279 0.045 37.88 .000 0.284 0.035 64.59 .000
Restriction status 0.049 0.015 11.20 .000 0.049 0.011 18.60 .000

Deviance = 95,760
Pseudo-R2 = .03577

Deviance = 89,006
Pseudo-R2 = .03626

Note  .  Only independent variables that contributed significantly (p < .10) to prediction of the criterion
measure were included in the models.  The criterion measure, total accidents during 1989-91, had a mean
of 0.152 and standard deviation of 0.414.
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may be overdispersed.  On the other hand, if the dispersion estimate is less than 1,
then the data may be underdispersed.  If the value is within the typically-acceptable
0.8 to 1.2 range, the model can be considered to be correctly specified (SAS Institute
Inc., 1993; Hilbe, 1994).  As displayed in Table 2, the dispersion statistic associated
with the Poisson model is 1.08, which indicates that overdispersion may not be a
problem with these data.  (For a discussion on tests for detecting overdispersion in
Poisson regression models, the interested reader is referred to Dean and Lawless
[1989].)

As can be seen, the results for the Poisson and negative binomial models are quite
similar.  Since the Poisson model is a particular case of the negative binomial model,
the difference in the deviance goodness-of-fit statistics for the two models can be
compared to decide if there is any gain in “model fit” from using a negative binomial
regression (the better fitting model having the lower deviance score).  The difference of
6,754 between the deviance statistics is significant (p < .000), indicating that the
negative binomial model performs significantly better than does the Poisson model.
However, each of the two models explains about the same amount of variance–the
pseudo-R2 is .0358 for the Poisson model and .0363 for the negative binomial model.

It should be noted that the results from the Poisson and negative binomial
regressions parallel those from the linear models presented in Table 1, since the
directions (i.e., signs) and p values of the regression coefficients are essentially
identical.  In fact, the p values for the variables in Table 2 are identical to those for
the OLS model through three digits.  (These pseudo-R2 statistics are usually not
comparable to the “true” R2 produced by ordinary least squares and weighted least
squares regression.)

Elasticities of independent variables were estimated from the Poisson parameters to
determine the impact of these variables on accident frequency.  Elasticities can be
roughly defined as the percentage change in the number of accidents resulting from a
1% change in the independent variable.  Elasticities for each individual observation
were computed, and then an average elasticity was estimated for the sample.
Because the elasticities of binary variables are not meaningful, Table 3 presents
elasticities only for the continuous predictor variables.

Table 3

Accident Frequency Elasticity Estimates

Independent variable Elasticity (%)
Prior total citations 0.072
Prior total accidents 0.047
Age -0.434
Note  .  Elasticity is defined as the percentage change in the average number of accidents that
would be expected to result from a 1.000% change in the independent variable.
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Table 3 provides some interesting insights.  For example, a 1.000% increase in the
number of prior total citations is associated with a 0.072% increase in subsequent
accident frequency.  Similarly, a 1.000% increase in prior total accidents is associated
with a 0.047% increase in subsequent accident frequency.  This suggests that, at
least for these variables, accident likelihood may be more sensitive to prior citations
than to prior accidents.

To gain some understanding of the relative importance of the binary variables
included in the Poisson regression model, a computation can be performed to provide
an idea of the relative effect of these variables on mean accident frequency (λij).  This
is accomplished using the coefficients in Table 2.  For example, λij 

 can be said to
increase 58.1% (e0.458/e0) if a driver holds a commercial driver license.  

Table 4 presents the percentage change in λij associated with each binary
independent variable.  These percentage changes are somewhat analogous to the
above elasticity coefficients except they represent increases in relative risk rather
than additive increments per unit of change.

Table 4

Percentage Change in Mean Accident Frequency (λij)

Due to Binary Independent Variables

Independent variable % change in λij
License class 58.1
Restriction status 5.0
P&M status 32.2
Gender -19.6

Categorical Data:  Linear Probability and Logistic Regression Models
Models used to estimate the probability of accidents from individual driver
characteristics usually involve categorical data where the dependent variable is
binary (0 for no accidents and 1 for one or more accidents) (Boyer, Dionne, &
Vanasse, 1990).  This section presents the results from the standard ordinary least
squares linear probability model and the logistic regression model.  The predictor and
criterion variables used in these models are the same as those used in the frequency-
data models presented above.

Table 5 presents results from the linear probability and logistic regression analyses.  
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Table 5

Summary of Nonconcurrent 6-Year (1986-88; 1989-91) Multiple Regression
Equation for Predicting Total Accidents Using Linear Probability

and Logistic Regression Models (n = 152,931)

Linear probability regression Logistic regression
Predictor variable Regression

coefficient
Standard

error
F p Regression

coefficient
Standard

error Wald χ
2 p

Constant 0.185 0.004 1975.43 .000 -1.336 0.037 1325.36 .000

Prior total citations 0.022 0.001 819.51 .000 0.139 0.006 605.09 .000

Prior total accidents 0.041 0.002 409.41 .000 0.287 0.015 356.65 .000

License class 0.073 0.005 225.64 .000 0.481 0.035 187.47 .000

Age -0.001 0.000 259.11 .000 -0.010 0.001 301.54 .000

Gender -0.022 0.002 153.79 .000 -0.212 0.016 174.63 .000

P&M indicator 0.037 0.007 25.67 .000 0.269 0.058 21.94 .000

Restriction status 0.005 0.002 8.28 .004 0.047 0.017 7.74 .005

F for the equation = 445.57
p = .000
R2 = .020

-2 Log L for intercept only = 120045.03
-2 Log L for intercept and covariates = 117348.76
Chi-square for covariates = 3056.82, df = 7, p = .000

Note  .  Only independent variables that contributed significantly (p < .10) to prediction of the
criterion measure were included in the models.  The criterion measure, total accidents during 1989-
91, had a mean of 0.152 and standard deviation of 0.414.

The standard ordinary least squares linear probability model is defined as

Y’
i = A + B1 X1 + B2 X2 + … BKXK

where the Xs represent the independent variables, and the Bs are the regression
coefficients assigned to the independent variables.  The dependent variable Y’ is
dichotomous:  Y’

i = 1 if the i-th individual had one or more accidents during 1989-91,
Y’

i = 0 otherwise.  The expected value of Y can be interpreted as the probability that
Y = 1 or more.

The results from the linear probability model indicate that the significant predictor
variables explain part of the differences in accident probabilities between drivers.  For
example, each additional total citation during 1986-88 increases the probability of
being involved in an accident in 1989-91 by 2.2 percentage points; an additional
accident during 1986-88 increases the probability of being involved in a subsequent
accident by 4.1%.  Being female reduces the probability of accident involvement by
2.2 percentage points.

The parameter estimates from the linear probability model are proportionally similar
to the ordinary least squares estimates presented in Table 1.  The shrinkage in R2

from .024 in the ordinary least squares model to .020 in the linear probability model is
attributable to the loss of information resulting from using a binary rather than
continuous accident criterion measure.
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The linear regression model has several potential limitations when the dependent
variable is binary (Maddala, 1991).  First, there is a serious heteroscedasticity
problem, meaning that the estimates of the prediction errors are not normally
distributed.  Secondly, the predicted value could possibly be outside the range of 0 to 1
for certain values of the predictor variables.  This is particularly  troublesome if the
expected value is interpreted as a probability.  For this application, a non-linear model
such as logistic regression is more appropriate.  However, the non-linearity in the
expected values only emerges as p approaches 0 or 1, and the two models tend to
yield very similar results for p in the range of .20-.80.

Because logistic regression models are nonlinear, the equations used to describe the
outcomes are more complex than those for OLS multiple regression models.  The
outcome variable, Y’

i is the probability of having one outcome or another (0 vs. 1 or
more accidents) based on a nonlinear function of the best linear combination of
predictors.  For two possible outcomes:

Y’
i = 

eU

1 + eU

where Y’
i is the estimated probability that the ith case (i = 1, 2, … n) is in one of the

categories and U is the linear regression equation:

U = A + B1 X1 + B2 X2 + … + BK XK

with constant A, coefficients Bj, and predictor, Xj for K predictors (j = 1, 2, … K).

This linear regression equation creates the logit, or log of the odds ratio:

ln = A + ∑ Bj X ij(    )Y’

1 - Y’

That is, the linear regression equation is the natural log of the probability of having
one outcome (accident-free) divided by the probability of having the other outcome
(accident-involved).  The procedure for estimating coefficients is maximum likelihood,
and the goal is to find the best linear combination of predictors to maximize the
likelihood of obtaining the observed outcome frequencies (Hosmer and Lemeshow,
1989).

Again, the signs (positive or negative) and p values of the logistic regression
coefficients in Table 5 are similar to those of the prior analyses.

Table 6 presents the odds ratios obtained from the logistic regression equation.  The
odds ratio as applied here refers to the relative odds of being accident-involved, as a
function of a predicted driver-record category.  For example, the odds ratios in Table 6
indicate that:
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• Drivers with two prior citations are 1.32 times as likely to have a subsequent
accident than are drivers with no prior citations.

• Drivers with two prior accidents are 1.78 times as likely to have a subsequent
accident than are drivers with no prior accidents.

Table 6

Odds Ratios for Prediction of Total Accident Involvement from Logistic Regression
Analysis of 6-Year Nonconcurrent Data (1986-88; 1989-91) (n = 152,931)

Predictor variable Odds-ratio
Prior total citations (1986-88)

2 1.32
4 1.75
6 2.31

Prior total accidents (1986-88)
2 1.78
4 3.15

Age (years)
5 0.95

10 0.91
15 0.86

License class 1.62
Driver license restriction 1.05
Physical and mental condition 1.31
Gender 1.24

• The risk of a subsequent accident is 1.62 times higher for commercial drivers than
it is for non-commercial drivers.

• The risk of a subsequent accident is 1.24 times higher for men drivers than it is for
women drivers.

So that the reader may get an idea about the order of magnitude of the accident
estimates generated from the Poisson, OLS, and weighted least squares models,
values of predicted accident rates are displayed in Table 7 for selected values of the
predictor variables.  While the values are arbitrary, they are within the range of
values for the predictor variables.  All models produce very similar estimates of
accident risk for the portrayed driver groups.  The Poisson and negative binomial
regression models do yield higher estimated risk levels for drivers with extremely
elevated counts of total citations and total accidents.  However, such “deviant”
records are rare.  Approximately 2% of the sample had five or more citations during
the prior 3-year (1986-88) period.  As is shown later, these differences in expected
values do not alter the comparative accuracy of the equations in predicting whether a
given driver is accident-free or accident-involved.
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Table 7

Predicted Frequency of Accidents from Multiple Regression Equations
at Various Values of the Predictor Variables

Predictor variable value Y’ λ’

Independe
nt

variable
combinatio

n

Sex Age License
class

Restrictio
n

status

P & M
status

1986-88
total

citations

1986-88
total

accidents

Ordinary
least

squares
estimatea

Weighted
least

squares
estimateb

Poisson
estimatec

Negative
binomial
estimated

A 1.48 45.67 0.033 0.34 0.01 0.64 0.17 0.1513 0.1481 0.1422 0.1421

B 1 35 1 1 0 5 2 0.5228 0.5121 0.7531 0.7601

C 1 45 1 0 0 6 2 0.5328 0.5291 0.7299 0.7385

D 1 59 0 1 1 3 1 0.3289 0.3396 0.3053 0.3082

E 1 60 0 1 0 2 0 0.1788 0.1856 0.1556 0.1558

F 1 70 0 0 1 0 0 0.1607 0.1653 0.1425 0.1428

G 2 29 0 0 0 3 1 0.2679 0.2699 0.2346 0.2358

H 2 30 0 1 0 0 0 0.1268 0.1200 0.1327 0.1324

I 2 35 1 1 0 5 2 0.4946 0.4829 0.6058 0.6118
Note  .  For license class, 0 = Class 3/C or motorcycle; 1 = Class 1/A or 2/B.  For restriction status, 0 = no license restriction on record; 1 = one or more license restrictions on
record.  For P&M status, 0 = no P&M condition on record; 1 = one or more P&M conditions on record.  For sex, 1 = male; 2 = female.  Values in row "A" represent sample
averages.
aEquation for ordinary least squares estimate:

Y
’ 
= 0.21060199 + (0.10759473 x License class) + (0.00769221 x Restriction status) + (0.05990415 x P&M status) + (-0.00116449 x Age) +

(0.02933590 x Total citations) + (0.0596493 x Total accidents) + (-0.02827030 x Sex)
bEquation for weighted least squares regression:

Y
’ 
= 0.204585 + (0.092161 x License class) + (0.006735 x Restriction status) + (0.066815 x P&M status) + (-0.001100 x Age) +

(0.034696 x Total citations) + (0.051395 x Total  accidents) + (-0.029154 x Sex)
cEquation for Poisson estimate:

λ
’ 
= exp [-1.3517 + (0.4583 x License class) + (0.0491 x Restriction status) + (0.2789 x P&M status) + (-0.0094 x Age) + (0.1119 x Total citations) +

(0.2739 x Total accidents) + (-0.2176 x Sex)]
dEquation for negative binomial estimate:

λ
’ 
= exp [-1.3550 + (0.4582 x License class) + (0.0488 x Restriction status) + (0.2840 x P&M status) + (-0.0094 x Age) + (0.1139 x Total citations) +

(0.2751 x Total accidents) + (-0.2170 x Sex)]
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Classification and Prediction Accuracy
Two measures of performance were used to compare the adequacy of the different
regression techniques.  The first measure selects the group of drivers with the most
prior total accidents in 1986-88, another group with the most prior total citations in  
1986-88, and five more groups estimated from the predicted scores in the multiple
regression models as having the highest accident potential.  Next, a count was made
of the number of subsequent accidents in which the drivers of these seven groups
were involved during 1989-91.  The model or scheme that identified drivers who in
1989-91 had the most accidents was deemed best.  All models were compared at Y’

thresholds which produced equal numbers of high-risk drivers.

The second approach evaluated the accuracy of the models in terms of predicting the
subsequent accident status of the subjects (accident-involved versus accident-free).
The false-negative and false-positive rates produced by the models were compared at
a variety of “cut points” in order to evaluate the respective sensitivity and specificity
of the equations in predicting subsequent accident involvement.

The performance of each of the seven schemes (prior citations, prior accidents, and
the five regression models) is presented in Table 8.  Several conclusions emerge from
these results.  First, to identify drivers with high accident potential, one can do better
than to use either prior citations or prior accidents alone.  Second, no one multiple
regression procedure substantially outperforms the others.  Third, the larger the pool
of drivers that are considered, the lower is the “yield.”  For example, among drivers
selected by the Poisson regression model, the 1,000 highest accident-risk drivers
have, on the average, about 0.47 accidents over the subsequent 3-year period, which
is 2.76 times the average (0.17) for the total sample; the next 4,000 have about 0.35
accidents per driver over the subsequent 3-year period; the next 5,000 have about
0.27 accidents per driver over the subsequent 3-year period; and drivers ranking
between 20,000 and 120,000 have 0.16 accidents per driver over the 3-years.  

Table 8

Number of Drivers Identified in Each 3-Year (1989-91)
Accident-Risk Strata by Each Model

Drivers estimated by model to be in:
Model Top

1,000
Next
4,000

Next
5,000

Next
10,000

Next
100,000 Total

Prior accidents (1986-88) 406 986 1,234 2,048 14,258 18,932
Prior citations (1986-88) 377 1,210 1,326 2,260 14,124 19,297
Ordinary least squares 473 1,380 1,385 2,317 14,783 20,338
Poisson 471 1,388 1,345 2,307 14,764 20,275
Negative binomial 469 1,390 1,343 2,310 14,770 20,282
Linear probability 467 1,381 1,389 2,338 14,753 20,328
Logistic 463 1,380 1,372 2,311 14,769 20,295
Note  .  Entries for prior accidents and citations represent the numbers of drivers having the highest
counts of incidents during 1986-88.
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The following section provides a comparison of the models in terms of “hits,” “false
alarms,” and “misses” in estimating individual accident involvement.

Predicting individual accident involvement.  Multiple regression equations can be used
to predict whether or not a driver will be accident-involved in a subsequent period of
time.  The accuracy of the classification can be summarized in Table 9.

Table 9

Contingency Table of Predicted vs. Actual Outcomes

Predicted state

Actual state Accident-involved Accident-free

Accident-involved a (true positive) b (false negative)

Accident-free c (false positive) d (true negative)

This classification table is obtained by accumulating the number of observations for
each category.  Sensitivity is the proportion of the event (i.e., accident-involved)
outcomes that were predicted to be accident involved.  Specificity is the proportion of
no event (i.e., accident-free) outcomes that were predicted to be no event.  The false-
positive rate is the proportion of predicted accident outcomes that were observed as
no accidents.  The false-negative rate is the proportion of predicted no accident
outcomes that were observed as accidents.

With perfect prediction, all drivers would be counted in cells a and d, and none would
be counted in cells b and c.  Drivers counted in cell c are false positives.  They are
predicted to be accident-involved, but are actually accident-free.  Drivers counted in
cell b are false negatives.  They are predicted to be accident-free, but are actually
accident-involved.  The desired outcome is to minimize the proportion of drivers in
cells b and c and to make fewer errors than would be made in classifying drivers
without the prediction equation.  To be of any use, the equation must result in more
classification accuracy than could be expected by chance alone.

To illustrate the accuracy of the regression equations in predicting the future accident
expectancy of individual drivers, a series of four-fold contingency tables were
generated displaying the relationship between each individual’s predicted and actual
accident-involvement frequency.

Tables 10-13 were constructed, each differing in the predicted accident score used for
predicting whether a given driver will have an accident.  These cutoff scores were
selected by generating predicted accident scores from the different equations and then
iteratively tabulating the sample using different scores of the predicted values until
nearly equal marginal proportions were obtained.  The tables summarize the results
for the ordinary least squares, Poisson, linear probability, and logistic regression
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procedures.  The cutoff score used in each analysis also produced approximately equal
numbers of false-negative and false-positive predictions, as would be expected from
the equality of the marginal distributions.  The use of equal marginals assigns equal
weights to both types of errors and tends to maximize the overall accuracy of
classification as represented by the phi coefficient.

Table 10

Predicted 3-Year Accident-Involvement Frequency and
Percentage Using Ordinary Least Squares Regression

Predicted accident status

Actual accident status Accident-involved Accident-free Total

Accident-involved 4,609 15,766 20,375
(3.01%) (10.31%) (13.32%)

Accident-free 15,762 116,794 132,556
(10.31%) (76.37%) (86.68%)

Total 20,371 132,510 152,931
(13.32%) (86.68%) (100.00%)

Percent correctly classified 22.63% 88.11%
Note  . A predicted accident rate cutoff of 0.216 was used to equalize marginals.  The odds ratio is
2.2, and the phi coefficient is .11.

Table 11

Predicted 3-Year Accident-Involvement Frequency
and Percentage Using Poisson Regression

Predicted accident status

Actual accident status Accident-involved Accident-free Total

Accident-involved 4,551 15,824 20,375
(2.98%) (10.35%) (13.32%)

Accident-free 15,787 116,769 132,556
(10.32%) (76.35%) (86.68%)

Total 20,338 132,593 152,931
(13.30%) (86.70%) (100.00%)

Percent correctly classified 22.38% 88.07%
Note  . A predicted accident rate cutoff of 0.200 was used to equalize marginals.  The odds ratio is
2.1, and the phi coefficient is .10.
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Table 12

Predicted 3-Year Accident-Involvement Frequency
and Percentage Using Linear Probability Regression

Predicted accident status

Actual accident status Accident-involved Accident-free Total

Accident-involved 4,587 15,788 20,375
(3.00%) (10.32%) (13.32%)

Accident-free 15,709 116,794 132,556
(10.27%) (76.41%) (86.68%)

Total 20,296 132,635 152,931
(13.27%) (86.73%) (100.00%)

Percent correctly classified 22.60% 88.10%
Note  . A predicted accident rate cutoff of 0.182 was used to equalize marginals.  The odds ratio is
2.2, and the phi coefficient is .11.

Table 13

Predicted 3-Year Accident-Involvement Frequency
and Percentage Using Logistic Regression

Predicted accident status

Actual accident status Accident-involved Accident-free Total

Accident-involved 4,576 15,799 20,375
(2.99%) (10.33%) (13.32%)

Accident-free 15,796 116,760 132,556
(10.33%) (76.35%) (86.68%)

Total 20,372 132,559 152,931
(13.32%) (86.68%) (100.00%)

Percent correctly classified 22.46% 88.08%
Note  . A predicted accident rate cutoff of 0.175 was used to equalize marginals.  The odds ratio is
2.1, and the phi coefficient is .11.
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Using Table 10 as an example, this table shows a statistically significant association
(p < 0.001) between predicted and actual accident involvement.  Persons predicted to
have accidents are approximately 2 times more likely to have accidents than          
are those predicted to be accident-free (3.0 ÷ 13.3 = 22.6% vs. 10.3 ÷ 86.7 = 11.9%).
However, the equation failed to correctly predict the majority of accident-involved
drivers, as evidenced by the low true-positive rate of 22.6%.  Although the false-
negative rate (10.3 ÷ 86.7 = 11.9%) appears low, this percentage of misclassification
represents the majority of the 13.3% of the total sample who were truly accident
involved.

The phi coefficient and odds ratio, shown at the bottom of each table, are commonly
used indices for quantifying the degree of association in contingency tables.  The phi
coefficient is simply the Pearson correlation coefficient between the actual and
predicted accident-status categories.  The odds ratio refers to the relative odds of
being accident-involved as a function of a predicted accident category.  More
specifically, the odds ratio is equal to (Pa ÷ Pc) ÷ (Pb ÷ Pd), where Pa, Pb, Pc, and Pd

represent the grand percentages in the respective cells.

In Table 10, the odds of predicted accident-involved subjects actually having an
accident as opposed to not actually having an accident, are (3.0% ÷ 10.3%) = 0.2919.
The same odds for the predicted accident-free group are (10.3% ÷ 76.4%) = 0.1350.
The ratio of these two odds (i.e., the odds ratio) is 2.2.  If the odds of having an
accident did not vary as a function of the sample’s predicted score, the odds ratio
would be 1.  This would indicate no relationship between the categories.  An odds ratio
exceeding 1 indicates some relationship between the categories.  However, the index
has no upper limit and is not a measure of correlation as is the phi coefficient.  The
fact that the odds ratio and phi coefficient are of modest size in Table 10 indicates
that the degree of individual predictive accuracy is low.  This is demonstrated by the
previously-discussed high false-positive rate and the fact that the equation
misclassifies the majority of the accident-involved drivers.

As demonstrated in Tables 10-13, all four multiple regression techniques are almost
identical in accuracy of individual prediction.  For example, the percent correctly
classified as accident-involved ranges between 22.6% for ordinary least squares
regression and 22.4% for Poisson regression.  Although not shown here, additional
contingency tables were produced for the four regression techniques using cutoff-
score values that would predict accident involvement for all drivers with accident
expectancies of first two or more, and then three or more, standard deviations above
the mean.  As was the case with equal marginals, the four regression methods
produced almost identical results in correctly classifying accident-involved and
accident-free drivers.  



EXPLORATORY MULTIVARIABLE ANALYSES

19

Sampling Validation Study
In an attempt to investigate the dependence of the preceding results on sample size,
an additional study was performed by selecting a 10% (n = 15,348) random sample of
the drivers used in the above analyses.  For purposes of this additional analysis,
equations were produced for the ordinary least squares, Poisson, and logistic
regression techniques.

Table 14 displays descriptive statistics for the biographical and driver record
variables for the total sample and the 10% sample.

Table 14

Descriptive Statistics for the Total Sample and the 10% Sample

Variable Total sample
(n = 152,931)

10% sample
(n = 15,348)

Total accidents (1989-91)
X 0.1517 0.1533
SD 0.4138 0.4152
Variance 0.1713 0.1724

Total accidents (1986-88)
X 0.1706 0.1680
SD 0.4380 0.4353
Variance 0.1918 0.1895

Total citations
X 0.6414 0.6409
SD 1.1964 1.1859
Variance 1.4313 1.4064

Age
X 45.67 45.44
SD 15.33 15.17
Variance 234.96 230.26

% class 1/A or 2/B 3.3 3.4
% one or more P&M conditions 1.4 1.4
% one or more restrictions 34.0 33.8
% male 52.4 52.6

In comparing the samples, it is evident that differences between the total and 10%
samples on the biographical and driver record variables are very small (less than 4%
in absolute value).

Table 15 presents a summary of the regression equations for the reduced sample
study.  As was the case with the previous analyses, subsequent total accidents was
associated with:
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• Increased prior citation frequency
• Increased prior accident frequency
• Having a commercial driver license
• Being young
• Being male
• Having one or more P&M conditions on record
• Having one or more driver license restrictions on record

Note from Table 15 that the p values for the first six coefficients are identical through
three digits.  Only the p values for P&M and restriction status differ.

Table 15

Summary of Nonconcurrent 6-Year (1986-88; 1989-91) Multiple Regression
Equation for Predicting Total Accidents within the 10% Sample Using Ordinary

Least Squares, Poisson, and Logistic Regression Models (n = 15,348)

Predictor

Ordinary least squares
regression

Poisson regression Logistic regression

variable Regression
coefficient

Standard
error F p

Regressio
n

coefficient

Standard
error χ2 p

Regression
coefficient

Standard
error

Wald
χ2 p

Constant 0.230 0.016 207.09 .000 -1.245 0.099 158.20 .000 -1.241 0.115 115.62 .000

Prior total 
citations

0.026 0.003 75.15 .000 0.1023 0.014 56.07 .000 0.133 0.018 54.60 .000

Prior total 
accidents

0.062 0.008 63.84 .000 0.287 0.037 59.36 .000 0.319 0.048 44.60 .000

License 
class

0.126 0.019 46.52 .000 0.524 0.083 40.33 .000 0.527 0.108 23.81 .000

Age -0.001 0.000 37.14 .000 -0.011 0.002 50.00 .000 -0.012 0.002 41.86 .000

Gender -0.034 0.007 24.66 .000 -0.253 0.044 32.79 .000 -0.241 0.050 22.93 .000

P&M 
indicator

0.051 0.028 3.30 .069 0.238 0.143 2.75 .097 0.249 0.180 1.91 .166

Restriction 
status

0.019 0.007 6.42 .011 0.120 0.046 6.98 .008 0.133 0.053 6.31 .012

F for the equation = 57.06
p = .000
R2 = .025

Log likelihood for intercept only 
= -6765.0565

Log likelihood for full model 
= -6583.0565

Likelihood ratio test = 365.021,
df = 7,  p < .000

-2 Log L for intercept only 
= 12111.80

-2 Log L for intercept and
covariates = 11811.97

Chi-square for covariates = 336.94,
df = 7,  p < .000

Note  .  The criterion measure, total accidents during 1989-91, had a mean of 0.153 and a standard
deviation of 0.415.

Table 16 presents the number of accidents for drivers selected by the various models.
Tables 17-19 present the classification of individual drivers into accident-status
categories as determined by the regression models.  Prediction cutoff scores were
selected in order to nearly equalize the marginals.
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Table 16

Number of Drivers Identified in Each 3-Year (1989-91) Accident
Risk Strata by Each Model for the 10% Sample

Drivers estimated by model to be in:

Model Top
500

Next
500

Next
1,000

Next
4,000

Next
5,000

Total

Prior accidents (1986-88) 140 124 215 657 639 1,775

Prior citations (1986-88) 145 132 223 729 621 1,850

Ordinary least squares 177 141 230 774 621 1,943

Poisson 177 147 230 750 644 1,948

Logistic 179 148 226 768 623 1,944

Note  .  Entries for prior accidents and citations represent the numbers of drivers having the highest
counts of incidents during 1986-88.

Table 17

Predicted 3-Year Accident Involvement Using
Ordinary Least Squares Regression for the 10% Sample

Predicted accident status

Actual accident status Accident-involved Accident-free Total

Accident-involved 461 1,601 2,062
(3.00%) (10.43%) (13.43%)

Accident-free 1,601 11,685 13,286
(10.43%) (76.13%) (86.57%)

Total 2,062 13,286 15,348
(13.43%) (86.57%) (100.00%)

Percent correctly classified 22.36% 87.95%
Note  .  A predicted accident rate cutoff of 0.218 was used to equalize marginals.  The odds ratio is
2.1, and the phi coefficient is .10.
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Table 18

Predicted 3-Year Accident Involvement Using
Poisson Regression for the 10% Sample

Predicted accident status
Actual accident status Accident-involved Accident-free Total
Accident-involved 464 1,598 2,062

(3.02%) (10.41%) (13.43%)
Accident-free 1,599 11,687 13,286

(10.42%) (76.15%) (86.57%)
Total 2,063 13,285 15,348

(13.44%) (86.56%) (100.00%)
Percent correctly classified 22.49% 76.15%
Note  .  A predicted accident rate cutoff of 0.204 was used to equalize marginals.  The odds ratio is
2.1, and the phi coefficient is .11.

Table 19

Predicted 3-Year Accident Involvement Using
Logistic Regression for the 10% Sample

Predicted accident status
Actual accident status Accident-involved Accident-free Total
Accident-involved 462 1,600 2,062

(3.01%) (10.42%) (13.43%)
Accident-free 1,596 11,690 13,286

(10.40%) (76.17%) (86.57%)
Total 2,058 13,290 15,348

(13.41%) (86.59%) (100.00%)
Percent correctly classified 22.45% 7.96%
Note  .  A predicted accident rate cutoff of 0.178 was used to equalize marginals.  The odds ratio is
2.1, and the phi coefficient is .10.

As was the case with the previous analyses, the regression methods produced similar
results in terms of driver selection and percent correctly classified into accident-
involved and accident-free categories.  The results of this validation analysis closely
parallel the previous findings, providing substantiation for the robustness and
reliability of the findings with sample sizes much smaller than the original N.

DISCUSSION

The results of the present analyses are consistent with those of prior research
(e.g., Gebers & Peck, 1994; Peck & Gebers, 1992; Peck & Kuan, 1983).  For example,
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it was shown in all the models that increased accident involvement was associated
with increased prior citation and accident frequencies, possessing a commercial driver
license, being young, being male, having a medical condition on record, and having a
driver license restriction on record.

Any generalization about driving performance from the present analyses is limited by
the absence of exposure data (e.g., miles driven) and territorial data (e.g., driver record
by ZIP Code and U.S. census variables).  Exposure and territorial variables not
available from the driver record file have been collected and will be analyzed in the
next report.

Results presented in this paper indicate that with these data, the use of different
regression techniques do not lead to any greater increase in individual accident
prediction beyond that obtained through application of ordinary least squares
regression.  It therefore appears safe to employ OLS multiple regression techniques
on driver accident-count distributions of the type represented by California driver
records, at least when Ns are extremely large.  This conclusion is consistent with
those contained in Peck, McBride, and Coppin (1971) and Peck and Kuan (1983).
Further asymptotic justifications for the use of parametric models on highly skewed
accident count data can be found in DeYoung (1995) and Gebers, DeYoung, and
Peck (1997).  In fact, a series of follow-up analyses to the present findings provide
support for the robustness of the parametric ordinary least squares technique in the
presence of extreme skewness with Ns as small as 2,500 (Gebers, in press).  The
results of these analyses indicate that the use of different regression techniques on
smaller sample sizes do not lead to any lessor or greater of an increase in individual
accident prediction beyond that obtained through application of ordinary least
squares regression.

In future reports, the statistical interaction between predictor variables (e.g., how the
relationship between subsequent accidents and age varies as a function of the prior
number of citations) will also be examined.  The subsequent analyses will also include
the following:

• Regressions on concurrent and nonconcurrent 3, 6, 9, 14, and 20-year samples.

• Regressions using accident sub-type criteria, such as single-vehicle accidents,
fatal/injury accidents, police-reported accidents, and culpable accidents.

• Regressions using an expanded set of predictors that will include individual
violation types (e.g., speeding, DUI, following too close) and additional driver
licensing variables (e.g., type of restriction, limited-term license, vision referral,
and number of months the driver license is suspended or revoked).

The objective of these future studies will be to provide driver license officials,
epidemiologists, traffic safety researchers, and organizations involved in risk
management and assessment with actuarial data on driver accident risk profiles.
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